
Aeta Cryst. (1978). A34, 19-26 
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General methods for treating the elastic X-ray scattering from solids containing non-rigid pseudoatoms 
are developed. The methods are based on a model which involves the assumption of the adiabatic approxi- 
mation and the representation of the total electron density as a sum of electron densities from dynamically 
deformable pseudoatoms. A basic result derived for this model is an expression for the X-ray structure 
factor in terms of generalized Born fl parameters, the calculation being carried out to first order in the 
strength of the dynamic deformations. If the dynamic-deformation contribution is treated in the harmonic 
approximation, it is shown that considerable simplification of the expression for the structure factor 
can be achieved, especially at high temperature (i.e. T > 0~, where 0 M is the Debye temperature). Another, 
fairly drastic, approximation discussed is that in which only the self-deformation contribution is retained. 
This latter approximation is used to estimate the effect of dynamic deformation for solid NaCI and NaF, 
utilizing some fl's calculated from a shell model. Though the calculated effects are small, they are such 
as to be measurable in highly accurate experiments. Other cases are discussed where the effects of 
dynamic deformation may be expected to be somewhat larger. 
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1. Introduction 

One of the fundamental assumptions inherent in the 
conventional treatment of elastic X-ray scattering from 
solids is the assumption that the ions vibrate rigidly, 
i.e. that each pseudoatom electron density perfectly 
follows its nucleus. This assumption is sometimes also 
called the 'perfectly following' or convolution approxi- 
mation. Its origins in treating diffraction from vibrating 
atoms may be traced back to the work of Debye 
(1930). While this approximation is certainly adequate 
for routine structural work, there is a growing body of 
evidence (Coulson & Thomas, 1971; Coppens, 1972; 
Stewart, 1976) to suggest that in certain cases it will 
have to be transcended when one seeks to obtain the 
maximum possible amount of positional and bonding- 
electron-density information from highly accurate 
X-ray structure-factor measurements. 

An important case where the presence of deformable 
pseudoatoms may be expected to complicate positional 
and electron-density determinations is that of bonded 
hydrogen atoms (Stewart, 1976). The large amplitude 
of vibration (even at low temperature) and the absence 
of a core structure make hydrogen pseudoatoms 
particularly susceptible to deformation. Although direct 
experimental evidence for this effect still seems to be 
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lacking, there appears to be strong indirect evidence 
based on the repeated failure of rigid-pseudoatom 
models to take proper account of the bonded-hydrogen 
electron density. Stewart (1976) cites an example where 
use of a single monopole scattering factor for H atoms 
does not, in general, give the time-averaged proton 
position. Mair (1978) has found that the assumptions 
of neutron-measured positional coordinates, together 
with monopole and dipole static deformation density 
contributions for H in NH4F, lead to contradictions 
involving negative probability density. Price, Varghese 
& Maslen (1978) found similar difficulties in refining 
data on melamine. 

Additional evidence to suggest that the rigid-pseudo- 
atom model may break down for bonded H atoms is 
gained from the theoretical calculations of Coulson & 
Thomas (1971) on the H 2 molecule. They compared 
the alternative calculations of the H 2 electron density, 
assuming first the convolution approximation and 
second the more accurate adiabatic approximation. 
This comparison indicated a ca 2% contraction in the 
apparent X-ray H - H  bond length when the adiabatic 
approximation is applied. Although small, this effect is 
still large in comparison with the precision now 
available from accurate X-ray and neutron diffraction 
experiments. Moreover, it should be realized that 
change in apparent bond length is probably not a very 
sensitive indicator of dynamic deformation. 

Further evidence for the failure of the convolution 
approximation is provided by the recent combined 
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X-ray and neutron diffraction results of Roberto, 
Batterman & Keating (1974) on the 'forbidden' 222 
reflexion in Si, as interpreted by Chelikowsky & Cohen 
(1974). The latter workers found it necessary to 
introduce different Debye-Waller factors for the core 
and bond charges, thus implying deformable Si 
pseudoatoms. More recently, Price, Maslen & Mair 
(1978) have reported the results of a re-analysis of the 
extremely accurate Pendell6sung data of Aldred & 
Hart (1973) on Si, and their results were also taken to 
imply the possible presence of dynamic deformation. 

Additionally, though from a rather different angle, 
the inelastic X-ray scattering studies by Buyers, 
Pirie & Smith (1968) led them to interpret anti- 
symmetric peaking of the X-ray TDS scattering under 
a Bragg peak in terms of dynamic deformation of 
pseudoatoms. This interpretation, however, appears to 
be complicated by the fact that the anharmonic 
coupling of one and two-phonon scattering also 
produces a similar effect (Pirie, Reid & Smith, 1971). 

Having briefly outlined the above pointers to the 
interest in studying deformable pseudoatoms, we shall 
turn below to a study of the theory of elastic X-ray 
(Bragg) scattering from a solid with such dynamic 
deformation. However, it will be helpful first to review 
earlier treatments of Bragg scattering including such 
deformability before introducing our own approach. 

2. Earlier treatments of Bragg scattering from 
non-rigid pseudoatoms 

The earliest treatment of elastic scattering by non-rigid 
pseudoatoms was given by Born (1942), who intro- 
duced dynamic charge-deformation parameters (fl) into 
the X-ray scattering formulation. These parameters 
were independent of the scattering vector k (i.e. 
constants, and so even functions of k). However, no 
detailed theory of the effect was worked out. The fact 
that Born's ~ parameters were taken as constants 
implies the over-simplified assumption that the valence 
and core electrons deform equally. Buyers, Pirie & 
Smith (1968), working in the language of many-body 
theory, have given a treatment of elastic and inelastic 
(TDS) X-ray scattering from dynamically deformable 
pseudoatoms in the harmonic approximation. Their 
work appears to contain the implicit assumption that 
the ~s, although k-dependent, are real, corresponding 
to symmetrical (i.e. 'breathing shell' type) charge 
deformation, and this assumption appears to have led 
them to predict zero effect on the Bragg scattering 
for the alkali halides (see also §§ 4.1 and 4.2.1 below). 
Pryor (1966) briefly discussed the possibility of 
detecting the effect of ionic deformation by comparative 
X-ray and neutron measurements of the Debye-WaUer 
factor. For the case of NaCI, Pryor estimated the 
effect of ionic deformation on the basis of anti- 
symmetrical (odd in k) charge distortions in a shell- 

model calculation, and predicted that the effect for this 
case was never greater than ~_1% of the X-ray 
scattering factor f(k). Jones & March (1970) intro- 
duced a 'tensor charge density' to describe the effect 
of charge deformation on phonon dispersion as well 
as X-ray scattering. Their approach, to the order they 
consider, does not lead to any effect on the Bragg 
scattering, although it would if taken to sufficiently 
high order. A null result for Bragg scattering would 
also obtain with the closely related approach described 
by Ball (1975). 

Another line of approach follows from the work of 
Melvin, Pirie & Smith (1968) who introduced some 
generalized fl parameters which imply continuous 
degrees of deformation of the electron density. 
Recently, Reid (1974) has evaluated the magnitude of 
these parameters for NaC1 and NaF on the basis of a 
'rigid' (fixed radius) shell model, in which case the 
/~ parameters are imaginary and odd (antisymmetric) 
in k. However, he did not estimate the effect on the 
elastic X-ray scattering intensity. 

In the present work, the effect of the dynamic 
charge deformation on X-ray Bragg scattering (§ 4) is 
worked out on the basis of a simple physical model 
for the total electron density (§ 3). For the purpose of 
assisting in the practical application of the formalism, 
it is shown that when the deformation contribution 
is treated in the harmonic approximation (§ 4.1), then, 
at high temperature, the temperature dependence of 
this contribution scales as the Debye-Waller factor 
(§ 4.1.1). As a further helpful step towards practical 
application of the present formalism, a simple 'self- 
deformation-only' approximation is developed (§ 4.2). 
This approximation is illustrated by application to the 
case of a monatomic solid with a primitive unit cell, 
for which it is shown (§ 4.2.1) that antisymmetric 
(rigid-shell) distortion produces an effect on the Bragg 
intensities which is of first order in the strength of the 
deformation ~, whereas the symmetric ('breathing') 
component of the deformation only produces an effect 
of higher order in fl [in agreement with the finding of 
Buyers, Pirie & Smith (1968) for this symmetric case]. 
For the case of antisymmetric distortion it is shown, 
within the self-deformation approximation, that the 
effect on Bragg scattering may be incorporated in the 
scattering formulae as a modified Debye-Waller factor 
for inner reflexions. The effect is shown to disappear 
at high angles if the core density does not deform. In 
§ 5 some shell-model results of Reid (1974) for the 
effect of ionic deformation on NaCI and NaF are used 
to help estimate the effect to be expected in the X-ray 
Bragg scattering. For NaF the effect of charge 
deformation is such as to produce a reduction of 
approximately 4% in the anion Debye-Waller factor 
for low-angle reflexions, while for NaC1 the effect is 
found to be approximately 2%. Since the magnitude 
of the dynamic deformation of an ion is closely related 
to its polarizability, it is possible to suggest substances 
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for which the predicted effect will be somewhat greater & Smith, 1968; Reid, 1974). These coefficients are here 
than these values, defined by the relation 

3. Model for charge density 

It is assumed that the adiabatic approximation (see, 
for example, Born & Huang, 1966) is valid, so that 
the total electron density in a crystalline solid may be 
represented, without loss of generality, by the following 
pseudoatom model: 

p(r) =p(r ,  {u/,~,}) = Z a~(r--  Rt~-- ut~ , {ut,~,}) , (1) 

where Rt~ is the equilibrium position vector of the xth 
nucleus in the /th unit cell, whilst ut~ is the small 
instantaneous nuclear displacement away from that 
site.* The pseudoatom (or pseudoion) electron density, 
a~, attributed to the xth type of atom is assumed to be 
an essentially localized 'atom-like' distribution, the 
assignment of which, in a solid, is always non-unique to 
some degree, but which can usually be determined 
satisfactorily in practice by some additional 
assumptions such as smoothness or the choice of a 
particular physical model. It should be noted that tr~ 
introduced in (1) contains the feature that it is not only 
a function of the instantaneous nuclear coordinate of 
the given ion, but also of the instantaneous nuclear 
coordinates of all the other ions in the solid. Thus it can 
be seen that (1) transcends the usual rigid-pseudoatom 
model which, in the present notation, can be expressed 
a s  

P°(r) = Z o '~( r -  Rt~ -- ut~ , {0})= ~. o°(r - Rt~ -- ut~), 
l~ ltc 

(2) 

0 being the rigid-pseudoatom electron densities, a~, 
thereby defined. 

In the present work we shall assume that p(r) . is  
sufficiently well approximated by the expansion of the 
deformation component in (1) to first order in ut,~,. 
This approximation gives the total electron density as 

p(r) = Y. [ ~ ( r -  R,,~ - ut~ ) 

+ ~, n t ,~ , .Vu , t r~ ( r - -g t~ - -u t~ ,  {nz,,~,,})llol], 3) 
l 'x '  

where the grad operates only on the second argument 
of a~ and is evaluated for {ut,,~,,} = {0}. A useful 
alternative representation of (3) is obtained by intro- 
ducing the generalized ,8 coefficients (Melvin, Pirie 

* To avoid complicating the notation we have not shown the 
time dependence explicitly. Therefore, we emphasize here that it is 
the instantaneous positions (i.e. relative time t = 0) which are 
relevant to elastic scattering and that time averaging (i.e. over the 
absolute time) will later be achieved by ensemble averaging. A 
further point of notation is that curly brackets, e.g. {ut,,,} in (I), 
are used to imply the set of all such quantities. 

V,, o Z r -  R~ - Ul~,/u~,,~,,})llol 

= ,8(I' l, x' to, r -  Rt~ -- ut~) ® ~ ( r -  R t ~ -  ut~), (4) 

where ® denotes the Fourier convolution operation, 
here carried out w.r.t, the r-dependent argument. An 
explicit expression for ,O can be derived by Fourier- 
transforming (4) with respect to r, and this yields 

,O(I ' / ,  /¢' K', k )  = Vut ,~ , f~(k,  {Ul,,,e,})llol/f°(k), (5)  

where 
f ° (k )  = f dr o°(r) exp {i k.r} (6a) 

is the usual rigid-pseudoatom scattering factor, while 

f~(k, {ut,,,,,,})= fdro'~(r ,  {ut,,~,,})ex p { ik . r /  (6b) 

is the deformable-pseudoatom scattering factor. From 
(5) it follows that ,8 is well defined except when f ° (k )  
is zero - this does not occur in practice, and so no 
problem arises. 

3.1 Properties o f  Born ,O coefficients 

By use of the present definitions of the deformable 
pseudoatom charge densities and the fact that the 
displacements {ut~} are independent variables, subject 
only to the constraint that they be small relative to 
the lattice parameters, the following general properties 
of the ,O's may be derived. 

(i) Invariance of the individual pseudoatom electron- 
density distributions to a uniform translation of the 
whole system leads to the result that 

~ ,O(I', x '  x, k) = 0 (7) 

for all x and k. As pointed out by Reid (1974), this 
condition is equivalent to saying that the deformation 
in acoustic modes of small wave vector must be zero. 

(ii) The assumption that there is a rigid core leads 
to the condition that 

fl(l', x ' x ,  k) ~ 0 as I kl ~ c~ (8) 

for all I', x', and t¢. This result obtains because 
is more highly localized in r space than Vu o~. 

(iii) Conservation of the total number '%f electrons 
in the system which is undergoing deformation leads to 
the condition that 

)_j, fl(l' l, x'  x, k) --, O as Ikl - - ,0  (9) 

for all x'. This result may be obtained by successive 
steps involving integration of (2) and (3) with respect 

0 contribution with the result to r, elimination of the cr~ 
f drp(r)  = f drp°(r),  and finally appropriate substi- 
tution of (4) and (5) for ,O. 
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(iv) If, in addition to (iii), the much stronger con- 
dition is imposed that no charge is lost or gained from 
the individual pseudoatom involved in the deformation 
process, then the more restrictive condition 

/~( l ' ,x 'x ,k)-- ,0  as I k l ~ O  (10) 

is satisfied for all l', x and to'. 
With the above representation of the electron density 

in hand, we now turn to calculating the X-ray 
scattering. 

4. Elastic X-ray scattering 

In the present work only the elastic X-ray scattering 
is considered. The principal quantity involved, therefore, 
is the coherent X-ray scattering amplitude (neglecting 
dispersion corrections), which is given by the Fourier 
inverse of the electron density. 

With the above approximation for the total electron 
density [equations (3), (4), and (5)], the instantaneous 
unit-cell X-ray scattering structure factor is 

F(k, {ut,K,})= ~. fK(k, {at,K,})exp {i k. (RIK + u/K)} 
K ( 1 1 )  

= Z f ° (k ) [  1 + Z Ul, K, .,8(l' l, X' X, k)l 
K I l K  r 

×exp{ik .utKtex p{ik.RtK}, (12) 

where the second equality defines the deformable- 
pseudoatom scattering factor fK in terms of the un- 
deformed pseudoatom scattering factorf  ° (the quantity 
sought in a conventional electron-density determin- 
ation). The effect of nuclear thermal motion on the 
structure factors (11) and (12) is taken account of by 
ensemble-averaging. For (12), this yields 

(F(k, {ut, K,})) = ~ fO(k)[(exp{ik.utK}) 
K 

+ X ~O(l'I,x'x,k).(ut,K, exp{ik.utK})lexp{ik.RtK}, 
t,K, (13) 

where the first term in square brackets in (13) is the 
usual generalized Debye-Waller factor, while the 
second, much smaller, term contains both deformation 
and temperature-dependent factors. Expression (13) 
provides a basis for extending the Dawson (1967a,b, 
1975) generalized structure-factor formalism (which 
presently includes non-spherically symmetric atoms 
and anharmonic thermal vibrations) to the case of 
highly polarizable atoms which deform dynamically as 
they vibrate. It should be noted that (13) is essentially 
model-independent so far as the precise nature of the 
thermal vibrations (Buyers et al., 1968) and dynamic 
deformations goes (Reid, 1974). Unfortunately, the 
large number of independent parameters in (13) means 
that it must be simplified still further in order to be 
useful in structure-factor refinements. It would there- 
fore seem more practical to either: (a) calculate the 

deformation terms (and perhaps also some of the 
vibrational terms) from a particular physical model 
involving only a few parameters, such as, for example, 
a shell model, or (b) make some judicious approxima- 
tions so as to reduce greatly the number of adjustable 
parameters. 

The possibilities under alternative (a) are vast, 
usually system-specific, often controversial and 
sometimes largely a matter of taste. Though the shell- 
model line of approach has been very fruitful to date, 
we do not have new results to add to it here. Rather, 
in the following two subsections we consider some 
possibilities under alternative (b). Since methods of 
treating the first term in square brackets in (13) are 
well documented, attention can be focused on the 
second term. 

4.1 Harmonic approximation for dynamic-deformation 
contribution 

Since both the dynamic deformation and anharmonic 
contributions to (F)  are expected to be small for 
most systems, a useful approximation to the dynamic 
deformation contribution in (13) may be obtained by 
treating this deformation term in the harmonic approxi- 
mation (Buyers et al., 1968). The assumption of the 
harmonic approximation to the vibrational problem for 
the deformation term enables us to rewrite (13), 
without further approximation, as 

(F)  = )." f°(k)[1 + i~(k)] (exp{ ik .u t~}  ) exp{fl~.R/~} 
K 

(14) 
with 

.,~l,,(k) = k* ~ (Ut,K, UttK)•(I'I,x'tc, k), (15) 

where the mathematical result derived in Appendix A 
has been invoked. In (15) k* and u~K denote the 
Hermitian conjugates of the vectors k and UIK, respec- 
tively. Thus, for example, <Hi, K, U~'IK} is a 3 X 3 matrix. 
Also, with regard to (15), it may be noted that .~K(k) 
is independent of l. This result follows because all unit 
cells are assumed equivalent so that (Ul, K, Ut*~) and 
~(l'l, x'x, k) depend only on l ' - l .  We note also 
that the deformation t e r m  ~K(k) will in general contain 
a complicated mixture of vibrational and pure dynamic- 
deformation (i.e. fl) contributions, and so will not be 
easily interpretable in physical terms. 

At this point it is possible to make direct contact 
with the work of Buyers et al. (1968). We observe 
firstly that they developed their treatment of dynamic 
deformation entirely within the framework of the 
harmonic approximation and used phonon coordinates. 
By contrast, we have presented much of our general 
treatment in a form which is independent of the 
particular vibrational approximation adopted and have 
used particle coordinates. In the present case, where 
the dynamic deformation contribution is treated in the 



N. H. MARCH AND S. W. WILKINS 23 

harmonic approximation, we note that our equation 
(15) translates to Buyers et al.'s (1968) equation (13) 
when the particle coordinates ut~ are expressed in terms 
of phonon coordinates. 

A further point of comparison may be established 
if we use (14) to calculate the kinematical (i.e. first 
Born approximation) intensity in reduced units, 
namely 

I(k) = N 2 Z ).' f ° (k )  f°(k)[  1 -- i. ~ ( k )  + i '~,(k)] 

× (exp{--ik.ut~})(exp{ik.ut, , , ,}) 

× exp{ ik . (R l~ , -Rt~)}  Z ~(k-- G), (16) 
G 

where an overbar denotes the complex conjugate, and 
the symbol G denotes a reciprocal-lattice vector. Some 
terms which are 0(lflf 2) have been ignored in obtaining 
(16). It can now be seen that expression (16) for I(k) 
largely agrees with the corresponding equation implied 
by equation (15) of Buyers et al. (1968), but with the 
small difference that ~'~ appears in (16), n o t  z'~. 
Whereas in the application of Buyers et al. 
(1968) the implicit assumption that ~ is real is 
made; this is not necessarily so, since fl may have a 
non-zero imaginary part (see, for example, § 4.2.1). 

Equations (14) and (16) show clearly how the effects 
of: static deformation of the pseudoatom electron 
density (contained in fo), dynamic deformation of the 
electron density (via . ~ )  and thermal vibration 
(i.e. (exp{ik. ul~})) appear as distinct factors in each 
term of the general expressions for the structure factor 
and intensity. It should be noted that each of these 
factors is, in general, complex. Equations (14) and (16) 
can be viewed as a form of the Dawson generalized 
structure-factor formalism (1967a,b; 1975) extended 
to include non-rigid pseudoatoms. In practice it would 
also be necessary to include the effects of anomalous 

0, dispersion on thef~ s. 
Equations (14) and (16) are in a form which makes 

them suitable for use in analysing experimental data. 
In order to make a clean separation of the various 
factors in (14) or (16), one would require, say, com- 
bined neutron and X-ray data at a series of tempera- 
tures. The neutron data would serve to measure the 
generalized Debye-Waller factors (exp{ik. ut~}) so 
that any residual temperature dependence in the X-ray 
data analysed via (14) or (16) would imply either 
dynamic deformation of the pseudoatoms or the 
presence of intrinsic temperature dependence in the 
rigid-pseudoatom scattering factors. In principle, it is 
impossible to separate these two effects if only elastic 
scattering is used, since this measures the instantaneous 
electron density averaged over time. However, one 
can speculate that when one of these two effects is 
dominant, they may, in practice, be distinguished by 
the nature of the effect. More specifically, if the 
measured . ~ ( k )  implied greater localization of the 

electron density with increase in temperature, one 
would tend to infer that it was because of dynamic 
deformation with the valence charge being 'left behind' 
in the nuclear motion (see also § 5), whereas if the 
measured z'~(k) implied delocalization of the electron 
density with increase in temperature, one would tend 
to infer that it was because of intrinsic change in the 
rigid-pseudoatom electron densities. Ultimately, these 
effects might be distinguished by use of inelastic- 
scattering data or by recourse to particular physical 
models (Chelikowsky & Cohen, 1974). 

4. I. 1. High-temperature form for .  ~,, (k) 

Concerning the temperature dependence of the 
deformation factors ~ in (14) and (16), it should be 
noted that the fl parameters are themselves temperature- 
independent (by hypothesis) so that all temperature 
dependence o f " '  ,~'~s given by (15) enters via the 
vibrational correlation functions (ut~ut,~,). It is thus 
useful to find (see Appendix B) that at high 
temperatures (T > ~M, where t~, 4 is the Debye charac- 
teristic temperature), where the effects of deformation 
will usually be largest, these vibrational correlation 
functions, evaluated in the harmonic approximation, 
scale as T; or put another way, they scale as the 
elements of the self-correlation function (ut~ut+~) 
(= B J 8 n  2, where B~ is the thermal-vibration matrix), 
so that one may write 

. e ~ ( k , T )  = k + (u t ,~ut t~) ,~°(k)  

= k t [B~(T)/8nE]~°(k), (17) 

where ._~o J, is defined by equating individual terms 
between (i'5) and (17), and will only be temperature- 
independent in the high-temperature r~gime. We note 
that in the high-temperature r~gime, application of (17) 
involves using only standard crystallographic thermal- 
vibration data, and so constitutes a significant simpli- 
fication of (15). 

4.2. Self-deformation approximation for. '£~(k) 

Although the present formalism is in a suitable form 
to be used to analyse high-temperature X-ray data for 
the effects of deformation, the values of the . z'°~(k) 
thus obtained would seem to be difficult to interpret 
physically, because they involve a complicated mixture 
of vibrational and pure dynamic deformation contri- 
butions (,8). For this reason, we present in this sub- 
section a simple, though fairly drastic, approximation 
to the ~ ( k ) .  This approximation is valuable, 
among other reasons, because it provides a simple 
picture for the effect of dynamic deformation on 
elastic X-ray scattering. 

The approximation which we now make in (15) is 
to assume that the main contribution to '£~(k) comes 
from self-correlations, i.e. from the diagonal terms 
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where l = l' and x = x'. This approximation* may 
be written as 

• z '~(k)  ~ k + (ut~  u~ ) l~ (0 ,KK,  k). ( 1 8 )  

That (18) should be a reasonable approximation for 
many systems follows from the following considera- 
tions. (i) Optic modes, when present, may be expected 
to produce most of the dynamic deformation,$ since 
for such modes neighbouring atoms tend to move out 
of phase. Moreover, for optic-mode branches a reason- 
able first approximation to the phonon dispersion 
surface is w(q) = constant, suggesting N identical 
Einstein oscillators which, as shown in Appendix B, 
would lead to the result 

<UI~: + Ul,~, > : 611,6~¢,<Ul~U~>, (19) 

and would make (18) exact for the deformation 
contribution of such branches. In (19) 6 u, and 6~, 
denote Kr6necker deltas. 

(ii) The self-deformation term /~(0,xx, k) appears, 
from the limited data available, to be the largest term 
(see also Reid, 1974, p. 3449). Evidence for this comes 
from the results of Reid (1974) for NaC1 and NaF. 
First, one can see from Reid's Fig. 5 that the value 
of Ifl(l ' ,xx' ,k)l  decreases fairly smoothly with increase 
in distance R t, ̀ from the given site. Second, from Reid's 
Fig. 5 and values of f l(O,xx,k) given in the text, the 
ratio of the self-deformation to the nearest neighbour 
fl at k = 2n/a (1.6,0,0) is estimated to be approxi- 
mately 15 for F -  in NaF and 1.5 for C1- in NaC1. 

In summary, one may reasonably expect that, for 
many systems, the main contribution to (15) will come 
from the self-correlation term (with the vibrational 
average taken only over those modes which contribute 
significantly to the deformation), since for this term 
both the vibrational and fl contributions may be 
expected to be largest. The approximation may be 
expected to be best in the high-temperature rbgime 
and also in the zero-point rbgime, since optic modes 
will tend to make their greatest relative contribution 
at these extremes of the temperature range. In 

* The referee has pointed out that the approximation (18) does 
not satisfy the uniform translation condition of (7) exactly (i.e. it 
is probably poor for long-wavelength acoustic modes). In view of 
(7), this problem can readily be overcome by modifying the 
approximation +(18) to specifically exclude such modes when 
evaluating (ut~ ut~); however, we do not wish to further complicate 
matters by developing this aspect here. 

$ This conjecture is supported by the shell-model calculations of 
Reid (1974) for NaCI and NaF (his Figs. 1 and 2, respectively), 
granted the following interpretation of Reid's curves. First, the 
quantity plotted is the ratio of relative shell displacement to core 
displacement for the given anion in various vibrational modes. 
Second, the portions of the phonon branches where the ratio of 
displacements goes to infinity are taken to reflect the fact that the 
anion displacement goes to zero there, rather than indicating any 
abnormally large relative shell displacement. Third, we suggest that 
a reasonable estimate of the magnitude of the relative shell 
displacement can roughly be gauged from Reid's curves, by 
continuing these smoothly through the apparent singularity. 

particular, one may expect the approximation to be 
useful for terminally bonded hydrogens. Comparison of 
(17) with (18) suggests that one may regard ~ o  as an 
effective self-deformation Born # parameter, i.e. as an 
effective #(0,xx, k) 'dressed' to take into account the 
normal modes of vibration of the system. 

4.2.1. Simple  cubic lattice 

In this subsection we give a particular application of 
(18) in order to help give some feeling for the nature 
of # and its effect on (F) .  We consider the case of a 
monatomic solid with a simple cubic lattice. 

From (16) and (18) it follows that the kinematic 
Bragg intensity for this system is proportional to 

l(k) = If°(k)12[1 + ik(B/87F)(fl(O,k) -- ff(0,k))] 

x e x p { - ( B / 8 n 2 ) k  2} Y 6 ( k -  G), (20) 
G 

where some obvious simplification of the notation has 
been effected. Using some properties of Fourier trans- 
forms, it follows from (5), plus the fact that a is real 
and a ° is centrosymmetric, that 

fl(l' - l, I,:' x ,  k)  = f l e ( l '  - l, x' •, k) 

+ iflo(l' - l, ~¢'t¢, k), (21) 

where fie and flo are real-even and real-odd functions 
of k respectively. Using (21), we can rewrite (20) as 

/(k) = If°(k)l 2 e x p l - ( B / 8 n 2 ) k  2} 

× [1 -- 2k(B/87F)flo(k )] • 6 ( k -  G) (22) 
G 

so that, to leading order in the deformations, only the 
imaginary-odd component of fl contributes. This anti- 
symmetric deformation contribution may be visualized 
as arising in a shell model where the shell radius is 
fixed (rigid-shell model), and deformation takes place 
only by rigid motion of the shell charge relative to the 
core charge. On the other hand, the non-contributing 
real-symmetric component fie(k) may be visualized as 
arising from a shell model in which a 'breathing' 
distortion takes place without any relative motion of 
the shell and core centroids. Buyers et al. (1968) 
considered only this latter type of term for the alkali 
halides, which explains why they predicted no effect 
of deformation on the Bragg scattering [for alkali 
halides the expression for I(k) is similar to (22)] to 
first order in the deformations. 

Intuitively one might expect dynamic deformation of 
the pseudoatoms to lead to a difference in the Debye-  
Waller factor as measured by X-rays relative to that 
measured with neutrons. Invoking the results developed 
earlier, a change in the X-ray Debye-Waller factor 
can be seen to be a reasonable representation of the 
effect of deformation, because [see also equation (3) 
of Reid (1974)] 

Po(k) ~_ fl0 k for small k, (23) 
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so that one may define an effective Debye-Waller 
factor for X-rays to be 

where 
Oeff(k ) = O -+-/IB(k), (24) 

AB(k) = 2B rio(k)/k ~_ 2ri,,B. (25) 

Physically, the difference is possible because the X-ray 
Debye-Waller factor (Bert) relates to the time-averaged 
electron-density distribution, whereas the neutron- 
measured Debye-Waller factor (B) relates to the time- 
averaged nuclear (or rigid-core) distribution. 

It should be appreciated that (23) is an approxi- 
mate representation for Po(k), which is only valid for 
small k. Higher-order terms in rio(k) than those included 
in (23) must lead to a departure of Bef f from the simple 
form outlined above, since p(k) tends to zero as k --, oo 
[equation (8)1. Note however that (23) has only been 
introduced to suggest that (24) provides a useful way 
of representing the effect of deformation, and does 
not imply the introduction of any additional approxi- 
mation so far as (24) and the equality in (25) are 
concerned. 

A similar modification of the Debye-Waller factor 
to that given above would also obtain if the high- 
temperature result (17) were adopted instead of (18); 
i.e. if fl(0,xx, k) were replaced by. ~°(k). 

5. Results for dynamic deformation in alkali halides 

Some estimates of the likely magnitude of AB for 
two alkali halides have been made, by use of the self- 
deformation approximation with the shell-model 
calculations offlo carried out by Reid (1974). For NaC1 
and NaF, Reid gave values for flo(0,Kx, k) at the point 
k = 2n/d (1.6,0,0) in the zone, where d is the unit-ceU 
spacing. These values are presented here in Table 1. 
Using these values in (25) (which also obtains for the 
NaCI structure), the values for AB/B recorded in Table 

Table 1. Values for  the generalized Born fl parameters 
as calculated by Reid (1974) and the consequent effect 
on the effective Debye- Waller factor derived via (25) 

All values are for k = 2n/d (I .6,0,0). 

fl:,(l = 0,xx,  k)* 
Case (]~- i) Ab/B 

1. NaCI 
Na  0 0 
CI - 0 . 0 2 1 8  - 0 . 0 2 4  

2. N a F  
Na  - 0 . 0 0 1 9  - 0 . 0 0 2  
F - -0 .039 --0.036 

* fix denotes the x Cartesian component of ft. 

1 were obtained. From these results, it can be seen 
that the antisymmetric deformation of the ions leads 
to a reduction in their effective Debye-Waller factor, 
corresponding to the outer electrons being 'left behind' 
in the nuclear vibrations. It appears from the present 
calculations that the magnitude of the effect is such as 
to be measurable in highly accurate studies (Pryor, 
1966), and so should be taken into account in the 
interpretation of such data. 

6. Summary and conclusions 

Methods have been developed for treating the elastic 
X-ray scattering from solids containing deformable 
pseudoatoms. These methods make use of the 
generalized Born ,8 parameters introduced by Melvin 
et al. (1968). The present methods may be used to 
investigate the effect of dynamic deformation either 
theoretically, by calculation from force models fitted to 
phonon-dispersion curves, or experimentally, by 
refining structure-factor measurements at two or more 
temperatures. 

Theoretical estimates for the magnitude of the effect 
in: some alkali halides (§ 5), H 2 (Coulson & Thomas, 
1971), and H + (Thomas, 1973) suggest that, although 
small, the effect is measurable in highly accurate 
studies. Since the magnitude of the dynamic deforma- 
tion of a pseudoatom is closely related to its electronic 
polarizability, it is possible to suggest substances for 
which the effect may be expected to be somewhat 
greater than for NaCI and NaF discussed above, such 
as LiH, LiF, and organic solids containing terminally- 
bonded hydrogens. 

In conventional electron-density determinations, the 
quantity which one attempts to isolate is f°(k),  giving 
the static electron density of the xth pseudoatom when 
all atoms are in their equilibrium positions. The 
present investigation reveals that conventional analysis 
more correctly gives a quantity of the form fo  
exp{-AB(k)/167~2}, where for small k, AB(k) resembles 
a Debye-Waller factor. Thus, residual temperature 
dependence in conventionally refined scattering 
factors is an indication that dynamic deformation may 
be present. Although some hint that the rigid-pseudo- 
atom approximation has broken down may be gained 
from data at one temperature (e.g. presence of 
extremely sharp dipoles in static deformation-density 
determination), such effects can always be subsumed 

0 physically unrealistic though the into the model for G, 
result may seem. The present work shows how, by 
using elastic X-ray scattering measurements at more 
than one temperature, one may hope to identify the 
presence of dynamic deformation. 

The authors are grateful to Drs S. L. Mair and A. C. 
Hurley for some helpful comments regarding this 
manuscript. 
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A P P E N D I X  ,4 

Our aim here is to show that 

(u/,~, expIik.ut~} ) = i (ut,~, u~ ) k(exp{ik.u/~}) 
(A1) 

in the harmonic approximation. 

Proof. We start by considering the one-dimensional 
case and simplify the notation by taking X - ut,~, and 
Y = ut~. Then, using the method of expanding the 
characteristic function of a distribution in cumulants 
(Kubo, 1962), we may write 

{ ~ (ih)v (ik)a(X,, ya)c } , 
(exp{ihX + i k Y } ) : e x p  v'. /],--~. 

v,A 

(A2) 

where the prime on the summation indicates that the 
case v = 2 = 0 is to be omitted, while ( )c denotes 
the cumulant average. 

Another result which is useful here is the relation 

1 ¢9 
(X  exp{ikY}) : i Oh(exp{ihX + ikY})ln: o. 

(A3) 

Now, for the case where X,Y are random variables 
belonging to a multivariate normal distribution (which 
occurs when the harmonic approximation obtains), 
only cumulants up to second order are non-zero, so 
that (A 2) becomes simply 

(exp{ihX + ikY} = exp{-½(hZ(X 2) 

+ 2hk(XY)  + k2(in))}.  (A4) 

From (A3) and (A4) it then follows that 

(X exp{ik Y}) : i k (XY)  exp{-½kZ(In)} 
: ik (XY)(exp{ikY}) ,  (A5) 

which when generalized to three dimensions becomes 
the required result (A 1). Note that it may readily be 
shown that (A 5) is valid when X -- Y. 

A P P E N D I X  B 

On generalizing equation (7.7.30) of Maradudin, 
Montroll & Weiss (1963) to the case of many atoms 
in a unit cell, one finds that at high temperature the 
instantaneous (i.e. relative time t = 0) two-particle 
displacement correlation function in the harmonic 
approximation is given by 

Nv/M,,M,, ' kT  [ e(tclq)e+(K' I~) og~(q) (u,,, utt,,,,)= Re 
qj 

× cos(q. (Rt, ' - Rt,~,)) / , (B 1) 
A 

where M~ denotes the mass of the xth atom in the 
unit cell, while e(xl~) is the eigenvector for the displace- 
ment of this atom when vibrating in the phonon mode 
of wave vector q in branch j. 

From (B1) it follows firstly that the ratio 

(u,~,~u~,~,,~,)/(u,~,~u,~,~,) 
is independent of T, and this justifies (18). 

Secondly, one can see from (B1) and the closure 
condition for the lattice functions, that (20) will hold 
for branches of the dispersion surface for which 
ogj(q) : constant, at least to the extent that one may 
make the assumption that e(xl~l)e*(x ' I~ l) is independent 
of q (as for example in the Einstein approximation). 
Examination of equation (7.7.29) of Maradudin et al. 
(1963) reveals that (20) remains valid when the 
complete range of temperatures is considered. 
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